Watching Paint Solidify

Paint both protect and provide a new aesthetic impression. Paint is applied to many different surfaces (technically called substrates) like structures such as ships, bridges, buildings, vehicles, and oil & gas. The paint on the steel substrate and paint film is the main focus of the present investigation.

Imagine a liquid paint applied on a steel substrate like ship or oil and gas structure. The chemical curing and physical drying of a liquid paint are relatively fast on the surface-air interface as compared to the underneath layers. A skin layer develops as the processes of curing and drying proceed and a number of changes happen in the freshly applied paint. The main changes are; development of cohesive and adhesive forces, decrease in the paint film thickness, increase in modulus (stiffness), glass transition temperature (Tg) and ultimately when a network is formed the volume changes and give rise to an internal stress. The magnitude of the internal stress in the paint film gradually increases and with time reaches its maximum value depending on the degree of cure and the amount of retained solvents. The temperature of the environment along with humidity plays a critical role in defining the Tg and modulus of the paint film that is directly associated with the internal stress. Therefore, it is important to investigate Tg, modulus and internal stress at the same time and at different temperatures.

Figure 1) A part of DMA setup

Figure 1) A part of DMA setup

Figure 2) A part of the tensile stress setup

Figure 2) A part of the tensile stress setup

A team headed by Senior Chemist Saif Ullah at Hempel is investigating glass transition temperature (Tg), modulus (stiffness), the coefficient of thermal expansion (CTE) and tensile stress at Aalborg University’s lab facility (Figure 1 and 2) with the help of Professor Jesper de Claville Christiansen and his team. This research work is part of the Fast Track Consortium and funded by Innovation Fund Denmark.   

The overall aim of the project is to get a better understanding of what happens in the curing process of the paint film applied on the steel substrate and to develop fast screening methods that will enable us to save development time and produce tough and resilient paint.

Electroplating of Fe-C coatings as an alternative to hard chrome coatings

- PhD project, collaboration between 1) Technical University of Denmark (DTU), 2) OCAS NV, ArcelorMittal Global R&D Gent (Belgium), 3) a. h. nichro Haardchrom (Denmark) and 4) Fast Track - Materials Solutions (Denmark).

Plating picture2.jpg

Strong concerns about the harmful effects of selected chemicals on humans and eco‐systems have resulted in chromium trioxide being on the list of substances included in Annex XIV of REACH ("Authorisation List"). The ban has huge consequences for the traditional hard chrome plating as the predominant current process to produce hard and wear resistant coatings for the aerospace, automotive, drilling and military industries.

Already in 2014, the need of environmental friendly alternatives to hard chrome encouraged the Danish hard chrome plater a. h. nichro Haardchrom, in collaboration with the Technical University of Denmark (DTU) and with financial support by the Danish Ministry of Environment and Food, to investigate the potential of novel types of coatings. Without compromising for neither the excellent coating properties nor the ease of a straightforward deposition technology, electroplating of iron-carbon coatings revealed promising results and a PhD project on surface engineering of Fe-C coatings was started in 2017. The project is a collaboration between the Technical University of Denmark and the companies a. h. nichro Haardchrom (Denmark) and OCAS NV, ArcelorMittal Global R&D Gent (Belgium) and it is further supported by the societal partnership; Fast Track - Materials Solutions (Denmark).

 
Electroplating setup - by Jacob Obitsø Nielsen

Electroplating setup - by Jacob Obitsø Nielsen

 

 

Although electroplating of iron has been developed a century ago, it has mainly been used for localized reparation of worn surfaces and its full exploration and application as a cheap, non-toxic, versatile plating process with a huge potential for engineering the microstructure and associated properties of the Fe-C coatings is now addressed in the project. With systematic lab-scale experiments, the plating process is optimized and challenges of upscaling for final implementation into industrial processing are tackled. These imply, for example, the risk of oxidation of Fe2+ to Fe3+ in the electrolyte, which even in case of low concentrations of Fe3+ will reduce the current efficiency and cause the coating to become brittle, stressed and pitted. After two years of development, a proof-of-concept has been established for an innovative process being able to handle the oxidation without chemical adjustment and being able to produce hard Fe-C coatings with similar wear resistance as hard chrome. Thorough microstructure characterization using state-of-the-art and complementary characterization techniques reveals the internal structure of the Fe-C coatings and enables understanding of its growth as a prerequisite for further tailoring of the plating process and, hence, the coating properties. As a next step towards successful implementation into industrial processing for large-scale synthesis of the hard and wear resistant surfaces, the Fe-C coatings will be tested on pilot-scale under surface lubrication, being typical for bearings or gears. While lubrication straightforwardly handles the main concern for the Fe-C coatings, its low corrosion resistance compared to hard chrome, further development and dedicated plating solutions are considered to solve the corrosion issue and, thus, widen the applicability of the Fe-C coatings while maintaining the mindset of a feasible and environmentally friendly process. The combined strengths of the stakeholders allows to act on specific needs from the industrial partners and brainstorm about possible solutions with experts from both academia and industry.

Netværksdag i materiale innovationens tegn

Anderledes måder og metoder at skabe innovation i virksomheder på tværs af faggrupper var et populært tema ved årets netværksdag for Fast Track-netværket, der inkluderede et ekspertpanel med nogle af verdens dygtigste materialeeksperter.

- Af Thore Dam Mortensen

Branchefolk fra både toneangivende større virksomheder i den danske industri, ambitiøse underleverandører og nysgerrige Start-Ups deltog i starten af september i årets store Fast Track-arrangement om innovative, men også praktiske måder at løse konkrete overflade- og materialeproblemer på. Organisationen bag det Innovationsfonden-støttede samfundspartnerskabsprojekt Fast Track, der blev søsat forrige år med 35 millioner kroner i støtte, havde i år valgt Teknologisk Institut i Taastrups hovedbygning som scene. Her kunne de fremmødte så opleve en række danske såvel som udenlandske forskere og industrieksperter gå i dybden med innovative måder at angribe konkrete problemstillinger på i industrien. I netværket er det således ambitionen, at medlemmerne hjælper hinanden, eksempelvis når en maskine går i stykker i produktionen, eller når der skønnes behov for helt nye materialeteknologiske løsninger på problemer.

Arrangører og medlemmer af Fast Track Project Management Teamet, Lars Pleth Nielsen og Kasper Bondo Hansen, var godt tilfredse med dagens fremmøde på lidt over 60 fagfolk.

Arrangører og medlemmer af Fast Track Project Management Teamet, Lars Pleth Nielsen og Kasper Bondo Hansen, var godt tilfredse med dagens fremmøde på lidt over 60 fagfolk.

Et af de indlæg, der på dagen mødte størst spørgelyst fra deltagerne, kom fra Steen Lauridsen fra Terma. Han fortalte om virksomhedens succes med at holde særlige workshops med henblik på at skabe nye ideer og inspiration i organisationen. For virksomheden har det vist sig at være en stor succes at få en række eksterne fagfolk fra Fast Track-netværket på besøg for at give deres besyv med i en kreativ skabelsesproces, hvor ud fra kommende input kan være med til at ændre mønstre og tankegange, konstaterede Steen Lauridsen. De første oplæg på dagen gav arrangementet et internationalt snit. Først var Solution Sales Lead, Tuomas Pinomaa, efterfulgt af Senior Scientist, Tomi Suhonen. Begge er ansat ved Technical Research Centre of Finland, VTT , der er den finske pendant til Teknologisk Institut, TI, i Danmark, og som TI har en samarbejdsaftale med. Sidstnævnte fortalte om Process-Structure-Properties- Performance, PSPP, paradigmet, der er på vej til at blive en hjørnesten inden for computerbaseret materialeudvikling, ICME. I den forbindelse præsenterede han en række vellykkede casestudier med resultater fra implementeringen af et egenudviklet Multiscale Materials Modeling Toolset til design af forskellige materialeløsninger målrettet en række specifikke industrielle applikationer. Blandt VTT's kunder er i dag førende industrivirksomheder som Sandvik Coromant, EOS, Caterpillar og ArcelorMittal, fremhævede Tomi Suhonen.

HJÆLP VINDINDUSTRIEN

Fra Force Technology gav Teamleader, Trine Nybo Lomholt, et indblik i arbejdet med at standardisere korrosionsbeskyttelsestiltag i forbindelse med en række projekter, der omhandler blandt andet fremstillingen af fundamenter til offshorevindmøller. Hun opfordrede de fremmødte til at byde ind med ideer til løsninger af problemer i de forskellige projekter. For der er stadig rigtig mange problematikker, der skal undersøges og løses med henblik på at gøre den grønne energiteknologi billigere og derved mere konkurrencedygtig i forhold til eksempelvis fossile brændstoffer, understregede hun.

Som afslutning på de fælles plenumoplæg gav leder af Teknologsk Instituts Tribologicenter, Lars Pleth Nielsen, tilhørerne en udførlig introduktion til bogen ’Advanced Surface Technology’, som han har skrevet sammen med DTU-professor, Per Møller. I bogen understreger de to verdenskendte brancheeksperter, at det er nødvendigt at have et overblik over mulige overfladebehandlingsmetoder for at kunne vælge den mest optimale løsning til en given materialeteknologisk problemstilling. Herudover gav han sit syn på en række andre velkendte overfladebehandlingsprocesser og -materialer.

What if we could avoid the spread of bacteria in hospital environments?

Every year 100,000 Danish patients get infected during hospitalization

This is found in a study made by SSI (Statens Serum Institut). Healthcare-associated infections are still one of the major causes of patient morbidity during hospitalization. Environmentally exposed hospital items such as door handles, bed rails and frames can easily harbour bacteria, and hence, be key areas for spreading bacteria. This is a particularly serious issue in intensive care units and in the case of immune-compromised patients. Therefore, self-disinfecting surfaces in healthcare locations receive increasing attention as additional strategies to the standard disinfection practices.

Door handles, in particular, are referred to as “critical contact points,” as door handles are the most frequently touched surface in any healthcare facility.

Especially, self-cleaning door handles are in focus in a cross-industry project between DTU, Elplatek A/S and the Fast Track consortium under the Innovation Fund Denmark. The latter is a societal partnership delivering services within materials engineering and gives access to swift and effective solutions within the field of materials engineering.
 

The solution is near

download.png

The project is led by Elplatek and is funded by Innovation Fund Denmark. The antimicrobial coating consisting of an electroplated copper-silver alloy, which can kill bacteria on frequently touched surfaces in hospital environments.

Through the project, it has been proven that especially the alloy of copper and silver is what makes the bacteria-killing process unique.

Both copper and silver alloys are well-known for their antibacterial activity. The combination yields an alloy coating that possesses even high antimicrobial activity due to an electrochemically driven killing mechanism.

Furthermore, electroplating is a low-cost manufacturing process, feasible on large-scale production and allows a regenerative design approach.
 

After just two hours the coating shows incredible results

The antibacterial efficacy of the copper-silver electroplated coating has been demonstrated according to the Environmental Protection Agency (EPA) test method. Results have shown that the coating kills more than 99.9 % of Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Enterobacter aerogenes and Pseudomonas aeruginosa already after two hours of exposure to the copper-silver surface.
 

Improving patient experiences, while saving money

By minimizing the spread of bacteria, in this case via door handles, we can avoid a huge part of the spread of bacteria in hospital facilities. This minimization will probably be able to save thousands of patients for uncomfortable and risky infections and eventually save enormous amounts of time and money.                                   

Fast Track is proud to be a partner in this present copper-silver project. Go to our website www.fast-track.nu to learn more about our other projects.


Sources:

-        https://www.dr.dk/nyheder/indland/3000-doer-af-infektioner-paa-danske-sygehuse-hvert-aar
-        http://hygienesolutions.com/blog/2015/08/26/the-heightened-risk-for-the-transmission-of-hospital-acquired-infection-risk-from-untreated-door-handles-in-healthcare-and-care-home-environments/